Monotone iterative methods for impulsive hyperbolic differential-functional equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On impulsive fuzzy functional differential equations

In this paper, we prove the existence and uniqueness of solution to the impulsive fuzzy functional differential equations under generalized Hukuhara differentiability via the principle of contraction mappings. Some examples are provided to illustrate the result.

متن کامل

Linear Multistep Methods for Impulsive Differential Equations

This paper deals with the convergence and stability of linear multistep methods for impulsive differential equations. Numerical experiments demonstrate that both the mid-point rule and twostep BDFmethod are of order p 0when applied to impulsive differential equations. An improved linear multistep method is proposed. Convergence and stability conditions of the improved methods are given in the p...

متن کامل

General uniqueness and monotone iterative technique for fractional differential equations

In this paper, the general existence and uniqueness result is proved which exhibits the idea of comparison principle. This result is also valid for fractional differential equations in a Banach space. The well-known monotone iterative technique is then extended for fractional differential equations which provides computable monotone sequences that converge to the extremal solutions in a sector ...

متن کامل

Existence Theory for Impulsive Partial Hyperbolic Functional Differential Equations Involving the Caputo Fractional Derivative

In this paper we investigate the existence and uniqueness of solutions of a class of partial impulsive hyperbolic differential equations with fixed time impulses involving the Caputo fractional derivative. Our main tool is a fixed point theorem.

متن کامل

Analytic Solutions for Iterative Functional Differential Equations

Because of its technical difficulties the existence of analytic solutions to the iterative differential equation x′(z) = x(az + bx(z) + cx′(z)) is a source of open problems. In this article we obtain analytic solutions, using Schauder’s fixed point theorem. Also we present a unique solution which is a nonconstant polynomial in the complex field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1996

ISSN: 0377-0427

DOI: 10.1016/0377-0427(95)00209-x